Product Code Database
Example Keywords: halo -mmorpg $33
barcode-scavenger
   » » Wiki: Fabius Function
Tag Wiki 'Fabius Function'.
Tag

Fabius function
 (

In , the Fabius function is an example of an that is nowhere analytic, found by .

This function satisfies the initial condition f(0) = 0, the symmetry condition f(1-x) = 1 - f(x) for , and the functional differential equation

f'(x) = 2 f(2 x)
for . It follows that f(x) is monotone increasing for , with f(1/2)=1/2 and f(1)=1 and f'(1-x)=f'(x) and .

It was also written down as the Fourier transform of

\hat{f}(z) = \prod_{m=1}^\infty \left(\cos\frac{\pi z}{2^m}\right)^m
by .

The Fabius function is defined on the unit interval, and is given by the cumulative distribution function of

\sum_{n=1}^\infty2^{-n}\xi_n,
where the are independent uniformly distributed on the . That distribution has an expectation of \tfrac{1}{2} and a variance of .

There is a unique extension of to the real numbers that satisfies the same differential equation for all x. This extension can be defined by for , for , and for with a positive . The sequence of intervals within which this function is positive or negative follows the same pattern as the Thue–Morse sequence.

The Rvachëv up function is closely related to the Fabius function : u(t)=\begin{cases} f(t+1),\quad |t|<1 \\ 0, \quad |t|\geq 1 \end{cases}. It fulfills the delay differential equation \frac{d}{dt}u(t)=2u(2t+1)-2u(2t-1). (See Delay differential equation for another example.)


Values
The Fabius function is constant zero for all non-positive arguments, and assumes rational values at positive arguments. For example:
  • f(1)=1
  • f(\tfrac1{2}) =\tfrac{1}{2}
  • f(\tfrac1{4}) =\tfrac{5}{72}
  • f(\tfrac1{8}) =\tfrac{1}{288}
  • f(\tfrac1{16}) =\tfrac{143}{2073600}
  • f(\tfrac1{32}) =\tfrac{19}{33177600}
  • f(\tfrac1{64}) =\tfrac{1153}{561842749440}
  • f(\tfrac1{128}) =\tfrac{583}{179789679820800}
with the numerators listed in and denominators in .


Asymptotic
\begin{align}\log f(x)&=-\frac{\log^2x}{2\log2}+\frac{\log x\cdot\log(-\log x)}{\log2}-\left(\frac12+\frac{1+\log\log2}{\log2}\right)\log x -\frac{\log^2(-\log x)}{2\log2}+\frac{\log\log 2\cdot\log(-\log x)}{\log2}\\&+\left(\frac{6\gamma ^2+12\gamma_1-\pi^2-6\log^2\log2}{12\log 2}-\frac{7\log 2}{12}-\frac{\log\pi}2\right)+\frac{\log^2(-\log x)}{2\log2\cdot\log x}-\frac{\log\log2\cdot\log(-\log x)}{\log2\cdot\log x}+O\!\left(\frac1{\log x}\right)\end{align}
for , where \gamma is Euler's constant, and \gamma_1 is the Stieltjes constant. Equivalently,
\log f\!\left(2^{-n}\right)=-\frac{n^2\log2}2-n\log n+\left(1+\frac{\log2}2\right)n -\frac{\log^2n}{2\log2}+\left(\frac{6\gamma ^2+12\gamma_1-\pi^2}{12\log 2}-\frac{7\log 2}{12}-\frac{\log\pi}2\right)-\frac{\log^2n}{2n\log^22}+O\!\left(\frac1n\right)
for .

  • (an English translation of the author's paper published in Spanish in 1982)
  • , Https://www.pdf-archive.com/2018/04/13/thue-morse/thue-morse.pdf" target="_blank" rel="nofollow"> preprint.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time